Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems

نویسنده

  • J. J. Dongarra
چکیده

The Chebyshev tau method is examined in detail for a variety of eigenvalue problems arising in hydrodynamic stability studies, particularly those of Orr-Sommerfeld type. We concentrate on determining the whole of the top end of the spectrum in parameter ranges beyond those often explored. The method employing a Chebyshev representation of the fourth derivative operator, D 4, is compared with those involving the second and first derivative operators, D 2 and D, respectively. The latter two representations require use of the QZ algorithm in the resolution of the singular generalised matrix eigenvalue problem which arises. Physical problems explored are those of Poiseuille flow, Couette flow, pressure gradient driven circular pipe flow, and Couette and Poiseuille problems for two viscous, immiscible fluids, one overlying the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial

In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...

متن کامل

Stability analysis of stratified two-phase liquid-gas flow in a horizontal pipe

This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...

متن کامل

Accurate solution of the Orr-Sommerfeld stability equation

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshevpolynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772.22. It is explained why expansions in Chebyshev polynomials are better s...

متن کامل

Gegenbauer Tau Methods With and Without Spurious Eigenvalues

Abstract. It is proven that a class of Gegenbauer tau approximations to a 4th order differential eigenvalue problem of hydrodynamic type provide real, negative, and distinct eigenvalues as for the exact solutions. This class of Gegenbauer tau methods includes Chebyshev and Legendre Galerkin and ‘inviscid’ Galerkin but does not include Chebyshev and Legendre tau. Rigorous and numerical results s...

متن کامل

On the stability of computing polynomial roots via confederate linearizations

A common way of computing the roots of a polynomial is to find the eigenvalues of a linearization, such as the companion (when the polynomial is expressed in the monomial basis), colleague (Chebyshev basis) or comrade matrix (general orthogonal polynomial basis). For the monomial case, many studies exist on the stability of linearization-based rootfinding algorithms. By contrast, little seems t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996